STRATEGIES 2006
The Sixth International Workshop on Strategies in Automated Deduction

(Seattle, WA, August 16, 2006).

Translation Templates to Support Strategy
Development in PVS'!

Hongping Lim 2

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02159, USA

Myla Archer?

Code 5546, Naval Research Laboratory,
Washington, DC 20375, USA

Abstract

In presenting specifications and specification properties to a theorem prover, there is
a tension between convenience for the user and convenience for the theorem prover.
A choice of specification formulation that is most natural to a user may not be
the ideal formulation for reasoning about that specification in a theorem prover.
However, when the theorem prover is being integrated into a system development
framework, a desirable goal of the integration is to make use of the theorem prover
as easy as possible for the user. In such a context, it is possible to have the best
of both worlds: specifications that are natural for a system developer to write in
the language of the development framework, and representations of these specifi-
cations that are well matched to the reasoning techniques provided in the prover.
In a tactic-based prover, these reasoning techniques include the use of tactics (or
strategies) that can rely on certain structural elements in the theorem prover’s rep-
resentation of specifications. This paper illustrates how translation techniques used
in integrating PVS into the TIOA (Timed Input/Output Automata) system devel-
opment framework produce PVS specifications structured to support development
of PVS strategies that implement reasoning steps appropriate for proving TIOA
specification properties.

Key words: Mechanical Theorem Proving, Templates,
Specification Translation, Strategies, I/O Automata, Timed
Automata, Hybrid Automata.

! This research is supported by AFOSR and ONR.
2 hongping@csail.mit.edu
3 archer@itd.nrl.navy.gov

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
AUG 2006 2. REPORT TYPE 00-00-2006 to 00-00-2006
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Trandation Templatesto Support Strategy Development in PVS £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Resear ch L abor atory,Code 5546,4555 Overlook Avenue, REPORT NUMBER
SW,Washington,DC,20375

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 16
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

LiM AND ARCHER

1 Introduction

The task of developing strategies for proving classes of properties in a theorem
prover divides naturally into at least two phases. The first phase is the formu-
lation for the prover of problem specifications, i.e., of settings and assertions
to be proved in the settings. The second phase is the provision of techniques
for guiding the prover in proving the assertions as automatically as possible.

In the formulation phase, a tension arises between convenience for the
formulator and the ultimate convenience for the theorem prover. In particular,
the specification formulation most natural to a user may not be the ideal
formulation for reasoning about properties of the specification in a theorem
prover. One way to alleviate the tension is to provide an intermediate layer
between the specifier and the prover that translates specifications more natural
to the user into a form designed to be convenient for the development of
partially or fully automated reasoning support in the prover.

A natural context for providing such an intermediate layer is in the inte-
gration of a theorem prover into a system development framework. In such a
context, it is possible to have the best of both worlds: specifications that are
natural for a system developer to write in the language of the development
framework, and representations of these specifications that are well matched
to the reasoning techniques provided in the prover. In a tactic-based prover,
these reasoning techniques include the creation and use of tactics (or strate-
gies) that can rely on certain structural elements in the theorem prover’s
representation of specifications.

In this paper, we focus on the integration of the theorem prover PVS [20]
into the TTIOA (Timed Input/Output Automata) [8] system development frame-
work. A combination of PVS features make PVS a good choice for theorem
proving support in TIOA. First, the higher order nature of PVS allows the use
of function-valued state variables in representing the state of an automaton.
This is useful, for example, when there are state variables parameterized by
a parameter whose type is uninterpreted (e.g., in a concurrent or distributed
system, a parameter of type process). As will be seen below, the higher order
constructs in PVS also provide a convenient method of treating instances of
continuous state evolution in an automaton analogously to atomic state tran-
sitions. Second, as described in [1,2], the fact that PVS saves rerunnable proof
scripts and supports automated assertion labeling and proof comments facili-
tates the implementation, as PVS strategies, of proof steps using which users
can create PVS proof scripts of properties roughly isomorphic to high level
hand proofs. This paper describes how the translation scheme central to our
integration of PVS into TIOA produces PVS specifications structured by tem-
plates to support the creation of PVS strategies implementing reasoning steps
suited to proving invariant and simulation properties of TTOA specifications.

The paper is organized as follows: Section 2 discusses how the work de-
scribed in this paper relates to other work. Section 3 provides some back-
ground on the TTOA toolkit and on the PVS interface TAME used to integrate

2

LiM AND ARCHER

PVS into the toolkit. Section 4 describes the TIOA specification language and
its user-friendliness. Section 5 describes a set of templates we designed for use
in the TAME representations of TIOA specifications, and explains how they
facilitate reusing old and developing new PVS strategies for TAME for reason-
ing about specification properties. Section 6 discusses how the TTOA-to-PVS
translator in the toolkit has evolved from producing nearly literal translations
of TIOA specifications to producing translations that follow the templates.
Finally, Section 7 discusses our work and presents some conclusions.

2 Relation to related work

Problem formulation.

The notion that the formulation of a problem is important in automated
reasoning is hardly new. It is discussed by Arvo [4] in the context of problem
solving. In the context of theorem proving, it has generally been discussed
in terms of best formulation for automatic theorem proving. For example,
Kerber [12] considers how to formulate higher order theorems in first order
logic, Kerber and Priicklein [13] consider how to best formulate first order logic
problems for resolution theorem proving, and Ramachandran and Amir [19]
study how to compactly represent certain first order theories in propositional
logic. The work in [13] is, like our work, concerned with transforming a human-
friendly representation of a problem into a form better for a theorem prover.
However, rather than focusing on formulating problems for better automatic
theorem proving, our work is concerned with better supporting development
of strategies to simplify interactive theorem proving in a higher order logic.

Translation to a theorem prover.

Various tools have been previously developed for translating specifications
in the IOA (Input/Output Automata) language [7], the predecessor of the
TTOA language, into the language of different theorem provers, including the
Larch Prover [5,9], Isabelle [21,18], and PVS [6]. A previous translator from
TIOA (and hence IOA) to PVS is described in [15]. The translator described
in this paper, which is derived from the translator in [15], is the first TIOA-
to-PVS translator designed especially to support strategy development.

3 Background

The TIOA toolkit.

The TTIOA toolkit [8] is designed to support analysis of systems based on
the TIOA model framework [10]. The toolkit provides a front-end checker
for type-checking specifications written in the TIOA formal language. Back-
end tools of the toolkit currently being developed include a simulator [16],
an interface to the UPPAAL model-checker [14], and a translator to the PVS
theorem prover that produces PVS specifications of systems and their prop-
erties suitable for use with the PVS interface TAME [1,2]. The initial version
of the translator to PVS was described in [15]. Recent improvements to the
translator are the central subject of this paper.

3

LiM AND ARCHER

vocabulary fischer_types
2 types process,

PcVal ue enumeration [pc_rem pc_test, pc_set, pc_check,
4 pc_l eavetry, pc_crit, pc_leaveexit, pc_reset]
6 automaton fischer(l_check, u_set: Real) where
u_set < |_check A u_set > 0 A |_check >0
8 inports fischer_types
signature
10 output try(i: process) internal test(i: process)
output crit(i: process) internal set(i: process)
12 output exit(i: process) internal check(i: process)
output ren(i: process) internal reset(i: process)
14 states
turn: Null[process] :=nil,

now. Real := 0,
pc: Array[process, PcVal ue]
| ast _set: Array[process,
first_check: Array[process,
transitions
internal test(i)
pre pc[i] = pc_test
eff if turn =nil then
pc[i] := pc_set;
last_set[i] :=
now + u_set

16
18
20
22
24
26

fi
28

internal set(i)

30 pre pc[i] = pc_set

;= constant (pc_ren),
Augnent edReal]
Real]

:= constant (u_set),
1= constant (0)

internal reset(i)
pre pc[i] = pc_reset
eff pc[i] := pc_l eaveexit;
turn :=nil;
output try(i)
pre pc[i] = pc_rem
eff pc[i] := pc_test

output crit(i)

eff turn := enbed(i); pre pc[i] = pc_l eavetry
32 pc[i] := pc_check; eff pc[i] := pc_crit
last_set[i] :=\infty;

34 first_check[i] := output exit(i)

now + | _check; pre pc[i] = pc_crit
36 eff pc[i] := pc_reset

internal check(i)

38 pre pc[i] = pc_check A output ren(i)

first_check[i] < now pre pc[i] = pc_l eaveexit
40 eff if turn = enbed(i) then eff pc[i] := pc_rem

pc[i] := pc_leavetry
42 else

pc[i] := pc_test
44 fi;

first_check[i] := 0;
46
trajectories
48 trajdef traj
invariant now > 0

50 stop when

3 i: process (now = last_set[i])
52 evolve
d(now) =1

Fig. 1. TIOA specification for fischer

The PVS interface TAME.

TAME (Timed Automata Modeling Environment) is a PVS interface de-
signed to simplify specifying and reasoning about automata (state machines).
TAME provides templates for specifications of automata and their properties,
and a set of mechanized proof steps that correspond to reasoning steps typi-
cal in high level hand proofs of automaton properties including invariant and
simulation properties. The proof steps are implemented as PVS strategies.

4 The TIOA specification language

This section provides an overview of the TIOA specification language, using
the TIOA description of the Fischer mutual exclusion algorithm in Figure 1
for illustration. A more complete description of the language can be found in
The TIOA User Manual and Reference Guide [§].

The TTIOA specification language is clear and concise. It allows a user to
define an automaton model by providing the minimum necessary information
in a natural way. A TIOA specification (see Figure 1) consists of a vocabulary
of data types declared using the vocabulary keyword, automaton descriptions
declared using the automaton keyword, and properties of automata declared

4

LiM AND ARCHER

invariant of fischer: Inv_0(s:states):bool =
2 V k: process (pc[k] = pc_set = 2 FORALL (k: process):
(last_set[k] < (now + u_set))) pc(s) (k) = pc_set => last_set(s)(k) <= fintine(nows) + u_set)
4 invariant of fischer: 4
V k: process (now < |ast_set[k]) Inv_1(s:states):bool =
6 invariant of fischer: 6 FORALL (k: process): fintime(now(s)) <= last_set(s)(k)
V k: process
8 (pc[k] = pc_set = last_set[k] # \infty) 8 Inv_2(s:states):bool =
invariant of fischer: FORALL (k: process): pc(s)(k) = pc_set => last_set(s)(k) /= infinity
10 WV i: process V j: process 10
(pc[i] = pc_check Inv_3(s:states):bool =
12 A turn = enbed(i) 12 FORALL (i: process, j: process):
A pc[j] = pc_set pc(s) (i) = pc_check AND turn(s) = up(i) AND pc(s)(j) = pc_set
14 = first_check[i] > last_set[j]) 14 => fintime(first_check(s)(i)) > last_set(s)(j)
invariant of fischer:
16 Y i: process V j: process 16 I nv_4(s:states):bool =
(pc[i] = pc_leavetry Vv pc[i] =pc_crit FORALL (i: process, j: process):
18 V pc[i] = pc_reset 18 pc(s) (i) = pc_leavetry OR pc(s)(i) = pc_crit OR pc(s)(i) = pc_reset
=-turn = enbed(i) A pc[j] # pc_set) => turn(s) = up(i) AND pc(s)(j) /= pc_set
20 invariant of fischer: 20
vV i: process V j: process Inv_5(s:states):bool =
22 (i #j =pc[i] #pc_crit V pc[j] # pc_crit) 22 FORALL (i: process, j: process):
i /=] =>pc(s)(i) /=pc_crit ORpc(s)(j) /= pc_crit

Fig. 2. Invariants of fischer in TIOA form and TAME/PVS form

using the keywords invariant and simulation (see Figure 2).

The main components of an automaton description are the signature,
states, transitions, and trajectories, where trajectories can be thought of as
“extended transitions” over time. (Usually, trajectories are continuous paths
through the state space.) To make use of user defined types, an automaton de-
scription can import a vocabulary. Lines 1-4 of Figure 1 shows how the types
process and PcValue are introduced by the vocabulary named fischer_type,
which is imported by the automaton fischer in line 8. The automaton can
be parameterized, with a where clause constraining the values of the param-
eters, as illustrated in lines 6-7. The signature of an automaton defines the
set of internal and external (input and output) actions, together with the
parameters the actions may take (see lines 9 13). State variables are declared
using the states keyword. As shown in lines 14 19, the type of each variable
is specified, together with its initial value. The TIOA language also allows the
use of an initially clause to further constrain the values of the variables in
a start state. No initially clause is needed in the specification of fischer.

Transitions are specified in a precondition-effect style. The precondition
asserts the conditions when the transition can take place, while the effect
contains a small program specifying how the state variables are modified by
the transition (see lines 20-46).

A trajectory definition (see lines 47 53) consists of an optional invariant
predicate, a stopping condition specified by the stop when clause, and an
evolve clause stating how the values of the state variables evolve over time.

A state invariant property of an automaton can be specified as an invariant.
An implementation relationship between a pair of automata [10] can be de-
fined as a forward simulation from one to the other. Figure 2 (left column)
shows the main state invariants of the automaton fischer in TTOA.

5 PVS templates for strategy support

As described in detail in [3], the PVS representations of TIOA specifications
produced by the TIOA-to-PVS translator follow a variant of the automaton
template used by TAME [1,2] and the TAME property templates, including
the forward simulation template described in [17]. As a result, the PVS proof
support provided in the TIOA toolkit includes all of the standard TAME

5

LiM AND ARCHER

strategies for proofs of properties of I/O automata described in [1,2,17].

Two major TAME strategies for proofs of properties of I/O automata are
the strategies auto_induct and prove_fwd_sim. The strategy auto_induct is
used to perform the initial stages of the proof of a state invariant by induc-
tion, while prove_fwd_sim does the same for a proof of forward simulation.
Both strategies rely heavily on both the naming conventions and the structure
conventions followed in the automaton and lemma templates. In particular,
both auto_induct and prove_fwd_sim rely on the names start, trans, and
enabled used for the start state predicate, transition function, and precondi-
tion predicate in the automaton template; auto_induct relies on the standard
invariant lemma structure (see Figure 2):

FORALL(s: states): reachable(s) => Inv_invname

and the strategy prove_fwd_sim relies on both the (much more complex) struc-
ture and standard name of the forward_simulation property.

One important use of structure conventions is the assignment of labels to
assertions in a proof goal. This is illustrated by the PVS template used for
the predicate start:

start(s:states) :bool =
s = s WITH [<initial values of some or all state variables>]
& <optional additional constraints> ;

This template allows auto_induct to separate the predicate start, which is
the hypothesis of the base case in an induction proof, into two separate hy-
potheses, labeled start-state and start-constraints. A strategy designed
to automate the proof of the base case can then refer to either or both of these
labels.

As is explained in more detail in Section 6, trajectories in a TTIOA spec-
ification are represented as automaton actions with information about their
invariant, stopping condition, and evolution captured in their precondition.
As with the template for start, the PVS template for the precondition of a
trajectory action provides a structure that supports useful labeling:

enabled(a:actions, s:states):bool = CASES a OF

traj-name(delta t, F):
(FORALL (t:(interval(zero,deltat))): traj_invariant(a)(F(t)))
AND (FORALL (t:(interval(zero,deltat))):
traj_stop(a) (F(t)) => t = delta_t)
AND (FORALL (t:(interval(zero,deltat))):
F(t) = traj_evolve(a)(t, s)),

ENDCASES

The TAME step apply_specific_precond—which, in an induction proof, in-
troduces into the hypothesis of an induction subgoal the details of the pre-
condition of the current action—can take advantage of this organization of
the precondition into a three-part conjunction to separate it into three hy-
potheses and give each a separate label. Afterwards, these labels can be used

6

LiM AND ARCHER

to focus each of the three TAME steps (apply_traj_invariant timeval),
(apply_traj_stop timeval), and (apply_traj_evolve timeval) on just its
relevant conjunct of the precondition, to define for a given time value, respec-
tively, the value of the trajectory invariant, the value of the trajectory stopping
condition, or the state to which the trajectory has evolved. The ability to sep-
arate concerns in this way also makes it possible to use (apply_traj_stop
timeval) and (apply_traj_evolve timeval) to define a relatively simple
TAME strategy for reasoning about deadlines.

Besides supporting a helpful labeling scheme, the trajectory action pre-
condition template facilitates the separation of concerns at an early point
in reasoning by avoiding the use of a shared universal quantifier for the three
parts of the precondition. A shared universal quantifier would require a shared
instantiation of the variable t, even in cases where one desires a different in-
stantiation for different parts of the precondition.

The template used for the transition function trans also provides a sepa-
ration of concerns:

trans(a:actions, s:states):states = CASES a OF
action_1: s WITH [<updates to individual variables>]

actionn: s WITH [<updates to individual variables>]
ENDCASES

Representing trans using this template allows the values of individual vari-
ables in the poststate of a transition to be accessed and reasoned about indi-
vidually, without having to reason about the values of other variables.

The next section discusses the details of several additional templates, along
with the evolution of the TIOA-to-PVS translator towards template support.

6 Translating TIOA specifications into PVS templates

This section provides an overview of the current translation scheme employed
by the TIOA to TAME translator, and discusses the alternative translation
schemes which have been considered or used previously. We also describe the
changes made to the translation scheme to follow the templates mentioned in
Section 5, and highlight issues encountered and how they were solved. We
refer the reader to [15] for a more complete description of the translator and
the translation scheme.

6.1 QOverview of translation scheme

As mentioned in Sections 3 and 5, the translation scheme makes use of TAME
templates. These templates together with the TAME definition and datatype
libraries specify the components of an automaton and provide definitions of
TTIOA concepts in PVS. The translator instantiates the template with the
states, actions and transitions of an input TIOA specification automatically,
translating trajectory definitions in TIOA to time passage actions in TAME.

Figure 3 shows the TAME representation of the TIOA description of

7

LiM AND ARCHER

fischer.decls : THEORY BEGIN 52 s WITH [now := now(s) + 1 x dur(t)]
2 (... ENDCASES
I_check: real 54
4 u.set: real enabled(a: actions, s:states):bool =
const_facts: AXIOM 56 CASES a OF
6 u_set < l_.check AND u_set >=0AND |_check >=0 nu_traj (delta_t , F):
58 (FORALL (t:(interval (zero,delta-t))):
8 states: TYPE = [# traj-invariant(a)(F(t)))
turn: lift[process], 60 AND (FORALL (t:(interval (zero,delta-t))):
10 now: real , traj_stop(a)(F(t)) => t = delta.t)
pc: array[process —> PcValue], 62 AND (FORALL (t:(interval (zero,delta.t))):
12 last_set: array[process —> time], F(t) = traj-evolve(a)(t, s)),
first.check: array[process —> real] #] 64 try (i):pc(s)(i)=pc_rem,exit(i):pc(s)(i)=pc.crit,
14 test(i):pc(s)(i)=pc-test,set(i):pc(s)(i)=pc-set,
start(s: states): bool = s=s WITH [66 crit(i):pc(s)(i)=pc_leavetry,
16 turn := bottom, rem(i):pc(s)(i)=pc-leaveexit ,
now := 0, 68 check(i): pc(s)(i) = pc-check AND
18 pc := (lambda(i_O: process): pc.rem), first_.check(s)(i) <=now(s),
last_set := 70 reset(i): pc(s)(i) = pc-reset
20 (lambda(i-0: process): fintime(u-set)), ENDCASES
first.check := (lambda(i_-0: process): 0)] 72
22 trans(a: actions, s:states):states = CASES a OF
f_type(i, j: (fintime?)): 74 nu-traj (delta-t , F): F(delta-t),
24 TYPE = [(interval (i, j))—>states] try (i): s WITH [pc:=pc(s) WITH [(i):=pc_test]],
76 crit(i): s WITH [pc:=pc(s) WITH [(i):=pc.crit]],
26 actions: DATATYPE BEGIN exit(i): s WITH [pc:=pc(s) WITH [(i):=pc-reset]],
nu_traj (delta_t: {t: (fintime?) | dur(t)>=0}, 78 rem(i): s WITH [pc:=pc(s) WITH [(i):=pc_rem]],
28 F: f_type(zero, delta.t)): nu_traj? test(i): s WITH
try (i: process): try? crit(i: process): crit? 80 [last_set := IF turn(s) = bottom THEN
30 set(i: process): set? check(i: process): check? last_set(s) WITH [(i):=fintime(now(s)+u.set)]
rem(i: process): rem? reset(i: process): reset? 82 ELSE last_set(s) ENDIF,
32 exit(i: process): exit? test(i: process): test? pc := IF turn(s) = bottom THEN
END actions 84 pc(s) WITH [(i) := pc.set] ELSE pc(s) ENDIF],
34 set(i): s WITH [turn := up(i),
visible?(a: actions): bool = 86 last-set := last.set(s) WITH [(i):=infinity],
36 try?(a) OR crit?(a) OR exit?(a) OR rem?(a) first.check := first_.check(s) WITH
timepassageaction?(a: actions): bool = nu.traj ?(a) 88 [(i) := now(s) + l.check],
38 length(a:(timepassageaction?)): real = pc := pc(s) WITH [(i) := pc-check]],
dur(delta-t(a)) 920 check(i): s WITH
40 [first.check := first.check(s) WITH [(i) := 0],
traj-invariant (a:(timepassageaction?))(s: states): 92 pc := IF turn(s) = up(i) THEN
42 bool = CASES a OF nu_traj(delta-t, F): pc(s) WITH [(i) := pc_leavetry]
now(s) >= 0 ENDCASES 94 ELSE pc(s) WITH [(i) := pc_test] ENDIF],
44 traj_stop(a:(timepassageaction?))(s:states):bool = reset(i): s WITH [turn := bottom,
CASES a OF nu.traj (delta-t, F): 96 pc := pc(s) WITH [(i):=pc-leaveexit]]
46 EXISTS (i: process): ENDCASES
fintime(now(s)) = last_set(s)(i) 98
48 ENDCASES IMPORTING timed.auto_lib@time_machine
traj_evolve(a:(timepassageaction?))(t:(fintime?), 100 [states , actions, enabled, trans, start, visible?,
50 s:states): states = timepassageaction?, length]
CASES a OF nu-traj (delta-t , F): 102 END fischer.decls

Fig. 3. TAME representation of fischer

fischer in Figure 1 generated by the translator, illustrating the translation
scheme. Automaton parameters are declared as constants, while the where
clause is translated as an axiom named const_facts (lines 3 6). State vari-
ables are declared within a record type states (lines 8-13). A start predicate
is defined to be true for start states. Action signatures are declared in the data
type actions (lines 26-33). A visible predicate is defined to be true for ex-
ternal actions, while the predicate timepassageaction? is defined to be true
for time passage actions. The predicate enabled asserts the preconditions of
the actions, while the function trans represents the transition function which
returns the post-state obtained by applying an action to a given pre-state
(lines 55-97). A trajectory definition in TIOA is translated as a time pas-
sage action parameterized by a function F, representing the trajectory, and
a time interval delta_t in PVS (lines 27-28). The time passage action im-
itates a trajectory by incrementing the values of affected variables as time
passes. The function F is of type f_type which maps a given time interval to
a state (lines 23-24). For defining time passage actions, three functions are
defined to represent the invariant, stopping condition and the evolve clause of

8

LiM AND ARCHER

the corresponding trajectory definition (see traj_invariant, traj_stop, and
traj_evolve in lines 41-53). Within the enabled clause of the time passage
action, the invariant, stopping condition and evolve clause are asserted for all
elapsed times within delta_t (lines 57-63). The trans function for the time
passage action simply returns the state obtained by applying the function F
to the elapsed time delta t (line 74).

An invariant is translated as a lemma in PVS stating that the assertion of
the invariant holds throughout all reachable states of the automaton. The right
column of Figure 2 shows the PVS translation of the invariants of fischer.

6.2 Start states

In a previous version of the TIOA description of fischer, the start state is
written in the following form, in which the initial values of the arrays pc,
last_set, first_check are asserted with an initially clause:

states
turn: Null[process] := nil,
now: Real := 0,

pc: Array[process, PcValue],
last_set: Arrayl[process, AugmentedReal],
first_check: Arrayl[process, Real]
initially V i: process (pc[i] = pc_rem) A
V i: process (last_set[i] = u_set) A
V i: process (first_check[i] = 0)

A previous translation scheme translates the start state as a conjunction
of the equalities equating each variable to its initial value together with the
initially clause:

start(s: states): bool =
turn(s) = bottom AND
now(s) = 0 AND
FORALL(i: process): pc(s) (i) = pc_rem AND
FORALL(i: process): last_set(s) (i) = u_set AND
FORALL(i: process): first_check(s) (i) = 0

This previous scheme asserts the start state condition using a conjunction of
clauses, and uses universal quantifiers to assert the values of the arrays.

In our current translation scheme, we use the TIOA operator constant
in the TTOA description to define an array in which all elements have the
same value as the given operand (see lines 15-19 of Figure 1). The use of
the constant operator avoids the use of the universal quantifiers, and allows
translation of array assignments into LAMBDA expressions in PVS (see lines 18-
21 of Figure 3). This is one instance where the form of the TIOA specification
was modified to facilitate the desired translation; eventually, this modification
can be performed invisibly to the user by a preprocessor. The use of a record
equality together with the LAMBDA expressions instead of a conjunction of
clauses containing universal quantifiers allows simple substitution for the start
state s in the base case of an invariant proof.

9

Lim AND ARCHER
6.3 Trajectory definitions

In an earlier version of the translation scheme, as described in [11], we trans-
lated a trajectory definition into a time passage action containing only the
time interval as a parameter. The enabled predicate for the time passage
action asserts that the invariant of the trajectory holds, and that the values
of the variables stay within the limits of any stopping condition inequality.
The trans function returns the post-state of the time passage action by incre-
menting the variables according to the evolve clause. The translations of the
TIOA expressions for the invariant, stopping condition and evolve clause are
also inserted directly into enabled and trans. For example, the translation
of the trajectory definition in lines 47-52 of Figure 1 using this translation
scheme would produce the following PVS output:

enabled(a: actions, s: states): bool = CASES a OF
traj(delta_t):
now(s)>=0 AND EXISTS(i:process): now(s)+delta_t <= last_set(s) (i),

ENDCASES
trans(a: actions, s: states): states = CASES a OF
traj(delta_t): s = s WITH [now := now(s) + delta_t],

ENDCASES
This translation scheme, however, does not allow assertion of properties that
must hold throughout the duration of the trajectory. The invariant can only
be asserted either at the beginning or the end of the trajectory, but not in
between.

To solve this problem, we embed the trajectory as a functional parameter
of the time passage action. This approach allows us to use the functional
parameter F to assert properties throughout the duration of the trajectory
using a FORALL quantifier.

An initial version of this solution makes use of only a single FORALL quan-
tifier, inserting the expressions of the invariant, stopping condition and evolve
clause directly into the quantifier:

enabled(a: actions, s: states): bool = CASES a OF
traj(delta_t, F):
FORALL(t: (interval(zero, delta_t))):
now(F(t)) >= 0 AND
EXISTS(i:process): now(F(t)) = last_set(s) (i) => t = delta_t AND
F(t) := s WITH [now := now(s) + tJ],
ENDCASES
trans(a: actions, s: states): states = CASES a OF
traj(delta_t, F): F(delta_t),

ENDCASES
This translation scheme, however, poses problems in proofs and strategies
when we only want to reason about a specific component of the trajectory

10

LiM AND ARCHER

traj _invariant(a: (ti nepassageaction?))(s:states):bool = CASES a OF
nu_traji(delta_t, F): . . .,
nu_traj2(delta_t, F): . . .
ENDCASES

traj _stop(a: (ti mepassageaction?))(s:states):bool = CASES a OF
nu_trajil(delta_t, F): . . .,
nu_traj2(delta_t, F): . . .
ENDCASES

traj _evol ve(a: (ti mepassageaction?))(t:(fintime?), s:states):states = CASES a OF
nu_trajil(delta_t, F): s WTH[. . .],
nu_traj2(delta_t, F): s WTH[. . .]
ENDCASES

enabl ed(a: actions, s:states):bool = CASES a OF
nu_trajl(delta_t, F):
(FORALL (t:(interval (zero,delta_t))): traj_invariant(a)(F(t)))
AND (FORALL (t:(interval (zero,delta_t))):
traj _stop(a)(F(t)) =>t = delta_t)
AND (FORALL (t:(interval (zero,delta_t))):
F(t) = traj_evolve(a)(t, s)),
nu_traj2(delta_t, F):
(FORALL (t:(interval (zero,delta_t))): traj_invariant(a)(F(t)))
AND (FORALL (t:(interval (zero,delta_t))):
traj _stop(a)(F(t)) =>t = delta_t)
AND (FORALL (t:(interval (zero,delta_t))):
F(t) = traj_evolve(a)(t, s)),

ENDCASES
Fig. 4. TAME translation of multiple trajectory definitions

definition. For example, when we only want to reason about how the evolve
clause of the trajectory affects the state variables, we still have to deal with
the entire universal quantifier consisting of all the three clauses.

As a refinement of this translation scheme, we add a layer of abstraction by
using the definitions traj_invariant, traj_stop and traj_evolve, together
with three separate FORALL clauses (see lines 41 53, and 57 63 of Figure 3).
As mentioned in Section 5, the use of these definitions with standard names
within three separate quantifiers aids the development of strategies which
can pick out the respective components easily. These definitions also allow
specifications containing multiple trajectory definitions to be handled without
any modifications or added complications to the strategies. For example,
if we have two trajectory definitions named trajl and traj2, then the PVS
translation will take the form shown in Figure 4, in which additional trajectory
definitions will simply add more cases to each definition.

6.4 Automaton parameters and where clause

In a previous version of the translation scheme, the where clause stating the
relationship among the automaton parameters was translated as an additional
clause conjoined to the start predicate. Then, an invariant duplicating the
where clause is specified, proved, and used in other invariants requiring the use
of the assertion about the automaton parameters. This invariant is trivially
proved, because it is by definition true in the start state, and because the
values of the automaton parameters are never modified by any transitions.
The translation scheme produces the following form, with an additional clause

11

LiM AND ARCHER

conjoined to the start predicate, and the specifications requires an additional
invariant:
start(s: states): bool = s=s WITH [

turn := bottom,

now := 0,

pc := (lambda(i_0: process): pc_rem),

last_set := (lambda(i_0: process): fintime(u_set)),

first_check := (lambda(i_O: process): 0)]
AND (u_set < 1l_check AND u_set >= 0 AND 1_check >= 0)

Inv_O(s:states) :bool =
u_set < 1_check AND u_set >= 0 AND 1_check >= 0
lemma_0O: LEMMA FORALL (s:states): reachable(s)=> Inv_0(s);

As an attempt to relieve the user from having to manually specify and
prove the additional invariant for every automaton, the translation scheme is
modified such that the where clause is translated as a separate axiom named
const_facts. This decision also allows the user to invoke the axiom directly
with a single TAME proof step (also called const_facts), and it also allows
strategies to automatically invoke and simplify the axiom when necessary.

6.5 Program statements

The translator currently supports two styles of translation for program state-
ments in the effects of transitions of a TIOA specification.

The first style uses explicit substitution, as illustrated by the trans func-
tion in the translation in Figure 3, using symbolic computation to express the
final value of every state variable in the post-state in terms of the original
values of the variables in the pre-state. This substitution is performed by the
translator during the process of translation.

The second style of translation preserves the structure of the statements
in the original program in the effect by using a series of LET statements. Each
LET statement corresponds to a statement in the original program, and mod-
ifies the state s accordingly. The modified state is then used as the state
parameter in the subsequent LET statement in a similar fashion. As an exam-
ple, the following code shows how the effect of the transition test (i) would
be translated using LET statements within the trans function:

test(i):

LET s= IF turn(s) = bottom

THEN

LET s=s WITH [pc := pc(s) WITH [(i) := pc_set]] IN

LET s=s WITH [last_set :=

last_set(s) WITH
[(i1) := fintime(now(s) + u_set)]] IN s

ELSE s
ENDIF 1IN s,

The use of explicit substitution tends to be more efficient in terms of the-
orem proving, because the translator has done the work of computing the
final value of each variable, allowing reasoning of individual variables to be

12

LiM AND ARCHER

performed easily. For short programs, the explicit substitution method also
produces more compact code. On the other hand, for longer programs which
might have deep levels of dependencies among variables, the substitution
method may yield more complicated expressions. In such cases, translation
using the LET keyword may produce a simpler translation which corresponds
directly to the statements in the original program. However, the use of a se-
quence of LET statements may complicate the proof as additional proof steps
will usually be required to simplify the LET expression into a form that al-
lows easy reasoning about the updated values of individual variables. Since
these additional proof steps for simplification will form part of an application-
independent strategy, they are likely to perform more computation than is
needed to find the updated values of particular variables. Currently, to move
the burden of computation outside of the theorem prover and into the trans-
lator, we have been using the substitution method in our examples.

6.6 Type Correctness Conditions

In our current translation scheme, the preconditions and transitions are de-
fined separately in the enabled predicate and the trans function respectively.
A side effect of this separation is that some unprovable Type Correctness Con-
ditions (TCCs) may arise as a result of the translation. As an illustration,
consider the following TIOA transition, assuming that z is a state variable:

output divide(x, y:Int)

pre y # 0
eff z :=x/y

The transition asserts in the precondition that parameter y is non-zero,
and then proceeds to divide the parameter x by y. The translation of the
above transition into the enabled predicate and trans function in PVS is as
follows:

CASES a OF

enabled(a: actions, s: states): bool
divide(x, y): y /=0
ENDCASES
trans(a: actions, s: states): states = CASES a OF
divide(x, y): s WITH [z := x / y]
ENDCASES

When we perform a type-check on the translation in PVS, we will have to
prove the TCC that y is non-zero for all states. However, since the precondi-
tion is now separate from the effect, we are unable to prove this TCC.

One way to resolve this issue is simply to have the translator assert the
precondition in a conditional expression in the trans function:

trans(a: actions, s: states): states =
IF enabled(a, s)
THEN CASES a OF divide(x, y): s WITH [z := x / y] ENDCASES
ELSE s ENDIF

Doing so will allow the use of the precondition clause within the enabled

13

LiM AND ARCHER

predicate to resolve the TCC. When proving an invariant, the assertion of the
precondition will be provided as part of the induction hypothesis, and thus
the consequent THEN case of the conditional expression will be evaluated as
desired with the alternative ELSE case ignored.

An alternative approach to handle the TCC is to have the user manually
assert the required condition in the TIOA specification:

output divide(x, y:Int)

prey # 0

eff if y # 0 then z :=x / y fi;

The translation would yield the following, allowing the TCC to be resolved:

trans(a: actions, s: states): states =
CASES a OF
divide(x, y): s WITH [z := IF y /= O THEN x / y ELSE z ENDIF]
ENDCASES

Since the precondition of a transition may be more complex than the actual
expression needed to resolve the TCC (e.g., the precondition in the above case
could assert y /= 0 together with several other constraints), automatically
replicating the enabled clause in the transition function trans could poten-
tially complicate the sequent of a proof with unnecessary formulas. Thus, we
currently require the user to adopt the second approach of manually asserting
the necessary condition to resolve the TCC. This approach has worked well
in the examples with which we have tested the translator. We might adopt
the first approach in future if we want to completely shield the specifier from
having to modify the specifications just to avoid the generated TCCs.

6.7 Combining universal quantifiers in invariants

When an invariant of a TIOA specification contains two or more consecu-
tive universal quantifiers, the translator automatically combines the quantified
variables into a single FORALL expression in the PVS output. For example,
the last three invariants of the TIOA specification of fischer in the left col-
umn of Figure 2 contain the universal quantifiers over i and j (Vi:process
Vj:process). The corresponding translation in PVS combines each pair of
universal quantifiers into a single FORALL (i:process, j:process) expres-
sion, as shown in the right column of Figure 2. The rationale for this automatic
simplification is to allow the user and proof strategies to skolemize such ex-
pressions more easily. In particular, combining the quantifiers makes it easier
for the strategy auto_induct to coordinate the skolemization of the inductive
conclusion with the instantiation of the inductive hypothesis in the induction
step.

7 Discussion and Conclusions

In this paper we have considered a particular case of the general problem
of how to provide efficient theorem proving support in an interactive, higher
order logic prover for establishing properties of a model of some given class,

14

LiM AND ARCHER

without forcing the user of the theorem prover to specify the model for the
convenience of the prover rather than in a form natural to the user. In the case
of automata models of systems, we have shown that this can be done by trans-
lating specifications written in a language designed for specifying automata
(TTIOA) into the language of a theorem prover (PVS) while adhering to a set
of templates governing how various aspects of the automaton model are repre-
sented in the theorem prover. We have discussed how both the structural and
naming conventions captured in these templates can be used to advantage in
developing efficient domain specific proof steps aimed at interactive reasoning
about the aspects of an automaton model for which there are templates.

The general principle we have followed of designing the translator to con-
vert source specifications into problem formulations that match templates con-
venient for analysis can no doubt be applied to advantage in other domains.
An interesting question is the extent to which the connection between tem-
plates and strategies that is possible in PVS, with its ability to attach labels
to formulas, can be duplicated in other higher order logic provers.

Acknowledgements

We wish to thank the anonymous reviewers for their helpful comments.

References

[1] Myla Archer. TAME: Using PVS strategies for special-purpose theorem
proving. Annals of Mathematics and Artificial Intelligence, 29(1-4):139-181,
2000. Published Feb. 2001.

[2] Myla Archer, Constance Heitmeyer, and Elvinia Riccobene. Proving invariants
of I/O automata with TAME. Auto. Software Engineering, 9(3):201-232, 2002.

[3] Myla Archer, HongPing Lim, Nancy Lynch, Sayan Mitra, and Shinya Umeno.
Specifying and proving properties of Timed I/O Automata in the TIOA Toolkit.
In Formal Methods and Models for Codesign (MEMOCODE 2006), 2006.

[4] James Arvo. Computer aided serendipity: The role of autonomous assistants in
problem solving. In Proc. of Graphics Interface ’99, pages 183 192, 1999.

[5] Andrej Bogdanov, Stephen Garland, and Nancy Lynch. Mechanical translation
of 1/O automaton specifications into first-order logic. In Formal Techniques for
Networked and Distributed Systems - FORTE 2002 : 22nd IFIP WG 6.1 Intern.
Conf., pages 364-368, Texas, Houston, USA, November 2002.

[6] Marco Devillers. Translating IOA automata to PVS. Technical Report CSI-
R9903, Computing Science Institute, University of Nijmegen, February 1999.

[7] S. J. Garland and N. A. Lynch. The IOA Language and Toolset: Support
for Designing, Analyzing, and Building Distributed Systems. Technical Report
MIT/LCS/TR-762, MIT Laboratory for Computer Science, August 1998.

15

LiM AND ARCHER

[8] Stephen Garland. TIOA User Guide and Reference Manual. Technical report,
MIT CSAIL, Cambridge, MA, 2006.

9] J. V. Guttag and J. J. Horning. Larch: Languages and Tools for Formal
Specification. Springer-Verlag, 1993.

[10] D. Kaynar, N. A. Lynch, R. Segala, and F. Vaandrager. The Theory of Timed
I/O automata. Synthesis Lectures on Computer Science. Morgan Claypool
Publishers, 2005.

[11] Dilsun Kaynar, Nancy Lynch, and Sayan Mitra. Specifying and proving timing
properties with TIOA tools. In Work-In-Progress Proc. 2004 IEEE Real-Time
Systems Symp. (RTSS’04), Lisbon, Portugal, December 2004.

[12] Manfred Kerber. How to prove higher order theorems in first order logic. Seki
Report SR-90-19, Fachbereich Informatik, Universitiat Kaiserslautern, Germany,
1990.

[13] Manfred Kerber and Axel Pricklein. Tactics for the improvement of problem
formulation in resolution-based theorem proving. Seki Report SR-92-09,
Fachbereich Informatik, Universitit des Saarlandes, Saarbriicken, Germany,
1992.

[14] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell.
International Journal on Software Tools for Technology Transfer, 1(1-2):134—
152, 1997.

[15] Hongping Lim. Translating timed I/O automata specifications for theorem
proving in PVS. Master’s thesis, MIT, Cambridge, MA, 2006.

[16] Panayiotis P. Mavromattis. TIOA Simulator Manual. February 15, 2006.
URL http://tioa.csail.mit.edu/public/Tools/simulator/.

[17] Sayan Mitra and Myla Archer. PVS strategies for proving abstraction
properties of automata. Electronic Notes in Theor. Comp. Sci., 125(2):45-65,
2005.

[18] Lawrence Paulson. The Isabelle reference manual. Technical Report 283,
University of Cambridge, 1993.

[19] Deepak Ramachandran and Eyal Amir. Compact propositional encodings
of first-order theories. In Proc. 20th Natl. Conf. on Artif. Intel. and 17th
Innovative Appl. of Artif. Intel. Conf., July 9-13, 2005, Pittsburgh, PA, pages
340-345, 2005.

[20] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Prover
Guide, Version 2.4. Technical report, Comp. Sci. Lab., SRI Intl., Menlo Park,
CA, Nov. 2001.

[21] Toh Ne Win. Theorem-proving distributed algorithms with dynamic analysis.
Master’s thesis, Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, May 2003.

16

	Introduction
	Relation to related work
	Background
	The TIOA specification language
	PVS templates for strategy support
	Translating TIOA specifications into PVS templates
	Overview of translation scheme
	Start states
	Trajectory definitions
	Automaton parameters and where clause
	Program statements
	Type Correctness Conditions
	Combining universal quantifiers in invariants

	Discussion and Conclusions
	References

